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We study transport properties of a two-dimensional electron gas, placed in a classically strong perpendicular
magnetic field and in constant and oscillating in-plane electric fields. The analysis is based on a quantum
Boltzmann equation derived for a weakly disordered two-dimensional electron gas. We consider disordered
potential with both long- and short-range correlations. Electron scattering off such disorder is not limited to
small change in momentum direction, but occurs on an arbitrary angle, including the backscattering. The
nonlinearity of the transport in the considered system is a consequence of two coexisting effects: formation of
a nonequilibrium distribution function of electrons and modification of the scattering rate off the disorder in the
presence of dc and ac electric fields. This work describes both effects in a unified way. The calculated
dissipative component of electric current oscillates as a function of the electric-field strength and frequency of
microwave radiation in qualitative agreement with experiments.
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I. INTRODUCTION

The discovery of the microwave-induced resistance oscil-
lations �MIROs� �Refs. 1 and 2� and the zero-resistance
states �ZRSs� �Refs. 3–6� has raised interest in nonlinear
transport properties of two-dimensional electron systems
�2DESs� in a perpendicular magnetic field at large filling
factors. The dissipative dc magnetoresistance exhibits giant
oscillations with the inverse magnetic field when exposed to
a microwave radiation.1,2,7–12 The period of MIRO is con-
trolled by the ratio of the microwave frequency � to the
electron cyclotron frequency �c= �e�B /mc in magnetic field
B. In the high-mobility samples the MIROs evolve into the
ZRS when the linear dc resistance becomes negative.13,14

These remarkable findings made it imperative to understand
the mechanism of oscillations preceding the onset of the
ZRS. The experiments were performed at relatively high
temperatures and low magnetic fields, when the
Shubnikov–de Haas oscillations are suppressed.

The appearance of the MIRO has been first attributed to
the modification of the impurity scattering rates in the pres-
ence of the magnetic field.15–17 This scenario is commonly
referred to as the “displacement” mechanism. It has been
predicted18,19 that a different so-called inelastic mechanism
dominates in the regime where both MIRO and ZRS were
observed.3–6 According to Ref. 18, the microwave radiation
is responsible for formation of a nonequilibrium component
of the distribution function, which is isotropic in momentum
and oscillates as a function of energy. The amplitude of such
nonequilibrium component of the distribution function is
characterized by the temperature-dependent rate of inelastic-
scattering processes 1 /�ee due to the electron-electron inter-
action. The analysis of Ref. 18 suggests that in weak electric
fields and at sufficiently low temperatures, the “inelastic”
contribution from the nonequilibrium component of the dis-
tribution function to the linear-response dc resistivity is
larger than the “displacement” contribution.

A different series of experiments focused on measure-
ments of the nonlinear differential resistance in the absence
of microwave excitation.20–25 In these experiments, the dif-
ferential resistance has been measured in the Hall bar geom-
etry as a function of the applied direct current. This current
creates a strong electric field in a perpendicular direction,
known as the Hall field, provided that the magnetic field is
strong, �c�tr�1, where �tr is the transport scattering time.
The scattering off disorder in the Hall field is accompanied
by a change in electron kinetic energy and leads to depen-
dence of transport characteristics on the strength of this field.
In particular, the differential resistance exhibits oscillations,
called the Hall induced resistance oscillations �HIROs�, as a
function of the Hall electric-field strength E. The HIROs
were explained20 as a result of the geometric resonance in the
electron transitions between the tilted Landau levels when
the diameter of the cyclotron trajectory becomes commensu-
rable with the spatial modulation of the density of states.
More rigorous approach26 employing the quantum kinetic
equation showed that the inelastic mechanism is important in
a relatively narrow interval of applied electric fields, and the
displacement mechanism becomes dominant in the regime of
strong direct current where HIRO were observed.

The effect of the microwave irradiation on the nonlinear
transport was experimentally investigated in Refs. 27 and 28,
in which a 2DES was subject to both constant and oscillating
electric fields. The value of the differential magnetoresis-
tance depends on two dimensionless parameters,

�dc =
�e�E�2Rc�

�c
, �ac =

�

�c
, �1.1�

where E is the magnitude of the in-plane constant electric
field, Rc=vF /�c is the cyclotron radius, vF is the Fermi ve-
locity, and �c is the cyclotron frequency; throughout this
paper we use �=1. Maxima of the magnetoresistance in the
vicinity of the main diagonal of the two-dimensional
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��ac ,�dc� plane are obtained when the sum �ac+�dc is integer.
Interestingly, this simple rule does not hold farther away
from the main diagonal �dc��ac. In fact, the interplay be-
tween both types of excitation gives rise to an unexpectedly
rich structure of extremes and saddle points of the differen-
tial magnetoresistance in the ��ac ,�dc� plane.27

Oscillations of the differential resistance as a function of
�dc are understood20–22,26 in terms of electron backscattering
off impurities, which corresponds to change in electron di-
rection on its opposite. Therefore, an appropriate model of
disordered potential has to include processes of electron scat-
tering on an arbitrary angle �, including �=�. Such potential
has both long-range correlations being responsible for small-
angle scattering, and short-range correlations leading to
backscattering. The proper treatment of the disorder potential
with above properties requires a further extension of a ki-
netic theory of 2DES �Ref. 17� developed for smooth disor-
der.

The goal of the present paper is to construct a systematic
theory of magneto-oscillations of the differential resistivity
of the 2DES in the presence of electric fields of arbitrary
strength. In experiments of Refs. 27 and 28, oscillations have
been observed at large filling factors, �EF /�c�1, with EF
being the Fermi energy. In this limit, we can treat the kinetics
of electron gas semiclassically. The analysis is performed in
the experimentally relevant range of classically strong mag-
netic fields, 1 /�tr	�c. In the present work we focus on the
situation when Landau levels are not resolved, which implies
the inequality �c�q
1, where �q is the quantum-scattering
time. The temperature is assumed to be relatively large, T
��c, so that the Shubnikov–de Haas oscillations are expo-
nentially suppressed �kB=1�.

The two most important contributions to the nonlinear
electric current are the inelastic contribution originating from
the modification of the electron distribution function8,18,26,29

and the displacement contribution representing the changes
of electron-scattering amplitudes off disorder. Additional
contributions were identified and studied in Ref. 29, but
these contributions have additional smallness in systems with
mixed disorder. The displacement mechanism can be studied
by various methods,15–17,30–33 which provide a qualitatively
correct picture for electron transport in strong electric fields.
However, for a full description of the crossover from “weak”
to “strong” fields, the kinetic equation is necessary.

The paper is organized as follows. In Sec. II we present a
simplified analysis of magneto-oscillations in combined con-
stant and oscillating electric fields and summarize the main
results. In Sec. III the kinetic equation is derived in the
framework of the Keldysh formalism. We solve the kinetic
equation within a bilinear response in microwave field and
apply this solution to calculation of the nonlinear current in
Sec. IV. Section V contains an analysis of the current beyond
the bilinear in microwave field response. Discussion and
conclusions are presented in Sec. VI.

II. MAIN RESULTS

A. Bilinear response to the applied microwave radiation in
strong dc electric field

In this section we present heuristic discussion of the re-
sults of the paper for the dissipative current in strong dc

electric field, but consider the contribution to the electric
current that is only bilinear in the microwave electric field.
Our analysis employs the semiclassical treatment of electron
motion in crossed electric and magnetic fields, valid in the
limit of large filling factor EF /�c�1, where EF is the Fermi
energy and �c is a cyclotron frequency. According to this
picture electron scattering off impurities amounts to the spa-
tial shift of the guiding center of the cyclotron orbit �Fig. 1�.
In the presence of the electric, E=exE, and magnetic, B
=ezB, fields, the dissipative current results from the imbal-
ance between the drift of cyclotron orbits parallel to the elec-
tric field. We denote a unit vector forming angle � with the
direction of the electric field ex by n�= �cos � ; sin � ;0�. The
electron scattering resulting in the change in the direction of
motion from n� to n�� leads to the shift of the guiding center

R given by


R�→�� = Rcez � �n� − n��� . �2.1�

We present the current as a sum of two contributions

j = j1 + j2. �2.2�

Here, the first term

j1 = 2e� d�d��

�2��2 � dx� d����,x���→��
1

��f��,x� − f��,x + ex
R�→���	 �2.3�

describes the current in the absence of processes changing
electron energy by absorption or emission of a microwave
field quantum with energy �. This term contains virtual pro-
cesses of electron scattering in microwave field, which
modify momentum scattering rate off disorder. Thus, func-
tion ��→��

1 is the disorder scattering rate for the direction of
electron momentum from n� to n�� and has the following
form within the Born approximation:

B

'����R

�n

'�n

xe
ye

xeE

�
'�

FIG. 1. �Color online� Scattering off impurity leads to the shift
of the guiding center of a cyclotron electron trajectory.
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��→��
1 = 
 1

��−��
−

P�

�̄�−��
����,x + 
X�→���

�0
, �2.4�

where 1 /��−�� is the disorder scattering rate in the absence of
electric and magnetic fields, and

1

�̄�−��
=

1 − cos��� − ��
��−��

. �2.5�

The dimensionless parameter

P� =
vF

2e2E�
2

2�2�� � �c�2 �2.6�

is proportional to the microwave power. In this paper we
limit the consideration to the circularly polarized microwave
radiation. The upper �lower� sign in Eq. �2.6� corresponds to
the right �left� circular polarization of the incoming micro-
wave radiation. The anisotropy of transport coefficients in
the case of arbitrary microwave polarization is left for a
separate investigation.34 Close to the cyclotron resonance the
dynamical screening of the microwave field by electron sys-
tem has to be taken into account. This screening results in a
modified form of parameter P� �see Ref. 35�. The drift of the
guiding centers due to the microwave field effectively smears
the disorder potential felt by the electron. For that reason the
scattering rate ��→��

1 , Eq. �2.4�, is suppressed by the micro-
wave radiation. This scattering rate suppression is reminis-
cent of the “motion narrowing” phenomenon and is further
discussed in Sec. III C.

Apart from the virtual processes of electron interaction
with microwave field, there are real processes, which are
accompanied by the absorption and emission of photons. The
second term in Eq. �2.2� takes into account the contribution
to the electric current from such processes,

j2 = 2e�
�
� d�d��

�2��2 � dx� d����,x���→��
�

��f��,x� − f�� � �,x + ex
R�→���	 . �2.7�

The rate of such scattering processes can be written in the
form

��→��
� = P�

��� � �,x + 
X�→���

�0�̄�−��
. �2.8�

We emphasize that in the present subsection we do not
consider multiphoton processes. This approximation is justi-
fied if the dimensionless parameter P�	1. We analyze the
case of the arbitrary parameter P� in Sec. V �see also Sec.
II B�.

The angular integrals in Eqs. �2.3� and �2.7� are restricted
by the conditions 
X�→��=ex
R�→���0, and spatial inte-
gration is limited to the stripe −
X�→���x�0. The electron
density of states has spatial dependence in constant electric
fields. This dependence appears under the spatial integral and
we discuss this dependence in more detail. In a perpendicular
magnetic field and in the absence of electric fields, the den-
sity of states of a 2DES, ����, has an energy modulation with
period �c,

���� = �0
1 − 2� cos
2��

�c
� , �2.9a�

where �0 is the density of states in the absence of fields and
the factor �=exp�−� /�c�q�
1. A constant electric field tilts
electron density of states along its direction, ex, resulting in
spatial dependence of the density of states,

���,x� = ��� + eEx� . �2.9b�

We present the results for the nonlinear current in strong
dc electric fields, �dc=2�e�ERc /�c�1, where the differential
resistance exhibits an oscillatory behavior. Rigorous analysis
of Sec. IV C shows that in this case the dominant contribu-
tion to the nonlinear current originates from the smooth com-
ponent of the distribution function, which can be taken as the
Fermi-Dirac distribution function at temperature T,

fT��� =
1

e�/T + 1
. �2.10�

Substitution of Eq. �2.4� into Eq. �2.3� gives the contribution
j1 to the current in the form

j1 =
2e

�0
� d�d��

�2��2 � d�������� + eE
X�→���
X�→��

�
 1

��−��
−

P�

�̄�−��
��fT��� − fT�� + eE
X�→���	 .

�2.11�

From Eq. �2.11� we obtain

j1 = �DE + �j1
�2�. �2.12�

Here the first term is the zeroth order in �, neglecting the
oscillations of electron density of states in magnetic fields in
Eq. �2.11�. This term corresponds to the classical Drude con-
tribution to the current at large Hall angles,

�D = e2�0
Rc

2

�tr
,

1

�tr
= �

−�

+� d�

2�

1 − cos �

��

, �2.13�

where �tr is the transport scattering time. The second term in
Eq. �2.12� represents a contribution to the current, which is
nonlinear in the applied electric field E and quadratic in pa-
rameter �,

�j1
�2� = 2�2e2�0E� d�d��

�2��2 
 1

��−��
−

P�

�̄�−��
�

��
X�→��	
2cos

2�eE
X�→��

�c
. �2.14�

The contribution of the first order in �, which is omitted in
Eq. �2.12�, describes the Shubnikov–de Haas oscillations and
can be estimated as ��D�T�. Here the additional small pref-
actor �T=exp�−2�2T /�c� appears as a result of averaging of
the rapid oscillations in the density of states over thermal
energies ���
T. The contribution of the second order in �
contains a square of the oscillating component of the density
of states and is not exponentially suppressed after integration
over thermal energy window. In this paper we consider the

EFFECT OF MICROWAVE RADIATION ON THE… PHYSICAL REVIEW B 78, 245319 �2008�

245319-3



limit of relatively high temperatures T��c /2�. The latter
condition is normally satisfied in experiments performed at
the nonlinear regime in dc electric field. Under this condition
the quadratic in � contribution dominates over the
Shubnikov–de Haas contribution linear in �.

For �dc�1 the angular integrations in Eq. �2.14� can be
performed in the stationary phase approximation. The main
contribution comes from the scattering within narrow inter-
vals centered at �= �� /2 and ��= �� /2. These back-
scattering processes correspond to the 2Rc jumps of electron
guiding center along the electric field. Equation �2.14�
yields26

�j1
�2� � �2��2�1 − 2P��

e�0vF

�2��

sin 2��dc. �2.15�

A similar analysis of the contribution Eq. �2.7� to the elec-
tric current due to the real processes of absorption and emis-
sion of microwave photons gives

j2 � �2��2P�

e�0vF

�2��

 �dc + �ac

�dc
sin 2���dc + �ac�

+
�dc − �ac

�dc
sin 2���dc − �ac�� . �2.16�

We emphasize that both Eqs. �2.15� and �2.16� are expressed
through the parameter �dc�ERc. These two expressions are
obtained within a stationary phase approximation and corre-
spond to processes representing shifts of electron cyclotron
trajectories by distance 2Rc along the applied dc electric
field. Therefore, Eqs. �2.15� and �2.16� have a simple geo-
metrical interpretation in terms of commensurability between
the space modulation of electron density of states by electric
field and the maximal displacement 2Rc in a single-scattering
process off disorder. The expression for the nonlinear current
beyond the saddle-point approximation is evaluated in Sec.
IV B.

In general, we represent the total current as a sum of the
linear Drude term �DE and the nonlinear term �j, which
arises due to oscillatory density of states in perpendicular
magnetic field,

j = �DE + �j . �2.17�

For the overlapping Landau levels, when the density of states
is given by Eq. �2.9a�, the nonlinear contribution is quadratic
in parameter �.

Within a bilinear response to the applied microwave elec-
tric field and in strong dc electric fields, we combine Eqs.
�2.2� and �2.12� and obtain

�j = �j1
�2� + j2. �2.18�

Equations �2.15�, �2.16�, and �2.18� represent some of the
main results of this paper. As we discuss in Sec. IV, despite
its simplicity, Eq. �2.16� explains pronounced features of the
transport measurement reported in Refs. 27 and 28.

B. Current at arbitrary microwave powers in strong dc
electric field

The result of Eq. �2.18� is just a limiting case of expres-
sion obtained in Sec. V for the current in strong dc electric
fields. In this case we again can neglect the modification of
the electron distribution function by electric fields and con-
sider only the displacement mechanism for generation of the
nonlinear component �j of the current Eq. �2.17�. We found
the following expression:

�j = �2��2 �e��0vF

�2��

sin 2��dcJ0�4�P� sin ��ac�

+
2�ac

�dc
cos 2��dc cos ��ac�P�J1�4�P� sin ��ac�� .

�2.19�

Here Jn�x� are the Bessel functions. Performing an expansion
in Eq. �2.19� to the first order in P�, we recover Eq. �2.18� in
terms of Eqs. �2.15� and �2.16�.

C. Weak electric fields

Above results were obtained under assumption that the
distribution function of electrons is given by the Fermi dis-
tribution function �see Eq. �2.10�	. In the presence of electric
fields the distribution function deviates from the equilibrium
configuration. This nonequilibrium distribution function af-
fects significantly the electric current in sufficiently weak
electric fields. For smooth disorder, we recover the result of
Ref. 18 for the nonlinear contribution �j to current in terms
of dimensionless parameters �dc, �ac, defined by Eq. �1.1�,
and P�, defined by Eq. �2.6�,

�j = 2�2�DE
�2�dc

2 + 2��acP� sin 2��ac

�tr/�ee + �2�dc
2 /2 + 2P� sin2 ��ac

. �2.20�

Here 1 /�ee is the relaxation rate of the nonequilibrium com-
ponent of the electron distribution function due to electron-
electron interaction. In the presence of sharp disorder, the
displacement contribution, arising due to the modification of
electron-scattering rate off disorder, may become comparable
to the inelastic contribution Eq. �2.20�. The latter contribu-
tion survives only in relatively weak electric fields, �dc
1.
In stronger electric fields, �dc�1, it contains an extra small
factor �q / ����dc� and the displacement mechanism becomes
more important �see Sec. IV C�.

III. QUANTUM KINETIC EQUATION

In the present section, we study a disordered two-
dimensional electron gas �2DEG� subject to in-plane electric
fields and derive the quantum kinetic equation, following
Ref. 17, but consider a mixed disorder characterized by scat-
tering amplitude which is finite for an arbitrary scattering
angle. The Dyson equation for the disorder averaged electron
Green’s function is
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�i�t − Ĥ�Ĝ�tt�� = 1̂��t − t�� +� dt1�̂�tt1�Ĝ�t1t�� , �3.1�

where Ĥ is the one-electron Hamiltonian in the absence of

disorder. Both the Green’s function Ĝ and the self-energy �̂
for electron scattering off disorder are matrices in the
Keldysh space,

Ĝ = 
ĜR ĜK

0 ĜA
�, �̂ = 
�̂R �̂K

0 �̂A
� . �3.2�

Matrix 1̂ stands for unit matrix in the Keldysh space as well
as in the one-electron Hilbert space.

Below we assume that the disorder potential is a combi-
nation of the long-range potential with correlation length �
created by remote positively charged donors and the short-
range potential with much smaller correlation length. When
conditions �	�H and pFl�1 are satisfied, the self-consistent
Born approximation for the self-energy calculation is
applicable.36 In this case, the expression for the self-energy
takes the form17

�̂�p̂� =� d2q

�2��2W��q���eiqr̂Ĝ�p̂�e−iqr̂	 . �3.3�

Here the function W��q�� is introduced as a Fourier transform
of the correlation function of a Gaussian disorder potential

�U�r1�U�r2�� =� d2q

�2��2W�q�eiq�r1−r2�. �3.4�

The external electric field can be eliminated by transfer-
ring to the moving reference frame, r→r+��t�, where ��t�
describes a two-dimensional electron motion in crossed elec-
tric and magnetic fields,

�t��t� = 
 �t − �c�̂

�t
2 + �c

2 � eE�t�
m

. �3.5�

Here �c= �e�B /mc is the cyclotron frequency and �̂ is the
antisymmetric tensor: �̂E=E�ez for any vector E lying in
the x-y plane of the 2DES �see Fig. 1�. In the moving refer-
ence frame, the disorder potential acting on electrons is time
dependent, and Eq. �3.3� becomes

�̂�p̂� =� d2q

�2��2Wt1t2
�q��eiqr̂Ĝ�p̂�e−iqr̂	 , �3.6�

where

Wt1t2
�q� = W�q�eiq�t1t2, �3.7a�

�t1t2
= ��t1� − ��t2� . �3.7b�

To proceed further we introduce the operator of the guiding

center coordinate R̂,

Ĥ =
p̂2

2m
− �, r̂ = R̂ + �H

2 �̂p̂ , �3.8�

where �H= �c� / �e�B�1/2 is the magnetic length. The commu-

tation relations between the operators of the guiding center R̂
and momentum p̂ are

�R̂�,R̂ 	 = i�H
2 �� , �p̂�, p̂ 	 = −

i

�H
2 �� , �R̂, p̂	 = 0.

�3.9�

Equation �3.6� takes the form

�̂�p̂� =� d2q

�2��2W12�q��eiq�̂p̂�H
2
Ĝ�p̂�e−iq�̂p̂�H

2
	 . �3.10�

We first analyze the retarded and advanced components of
the Dyson equation, Eq. �3.1�, which determine electron
spectrum. Then, we reduce the equation for the Keldysh
component of Eq. �3.1� to the kinetic equation for the elec-
tron distribution function.

A. Electron spectrum

The Dyson equation, Eq. �3.1�, for the retarded compo-
nent of the Green’s function is given by

�i�t − Ĥ	ĜR�t,t1; p̂� =
��t − t1�

2�
+ �

t1

t

dt2�̂R�t,t2�ĜR�t2,t1; p̂�

�3.11�

along with the self-consistency Eq. �3.10�. We limit the
analysis to the first order in the parameter �=e−�/�c�q. The
zeroth-order solution in � corresponds to the solution in the
absence of a magnetic field. The standard answer for the
self-energy in this case is

�̂0
R�t,t�� = −

i

2�q
Îe��t − t�� , �3.12�

where Îe is the unity operator in the coordinate space.
The Green’s function corresponding to Eq. �3.12� is ob-

tained by solving Eq. �3.11�,

Ĝ0
R�t,t�� = − i��t − t��e−iĤ�t−t��e−�t−t��/2�q. �3.13�

We consider the first iteration of the self-consistent Born
approximation. For this purpose, we substitute Eq. �3.13� to
the retarded matrix element of Eq. �3.10�,

�̂tt�
�R�p� = − i��t − t��e−�t−t��/2�q

�� d2q

�2��2Wtt��q�eiq�p̂�H
2
e−iĤ�t−t��e−iq�p̂�H

2
.

�3.14�

We notice that the operator product in the integrand in Eq.
�3.14� can be written as

eiq�̂p̂�H
2
e−iĤte−iq�̂p̂�H

2
= e−iĤteiq�̂p̂t�H

2
e−iq�̂p̂�H

2
, �3.15�

where the time-dependent operators are p̂t=eiĤtp̂e−iĤt. To
find the time dependence of the operators, it is convenient to
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introduce37 “raising,” p̂+, and “lowering,” p̂−, operators, de-
fined as p̂�= �px� ipy� /�2 and obeying the commutation re-
lation �p̂+ , p̂−	=−1 /�H

2 . The introduced notations for p̂� are
useful as new operators have simple form in the interaction
picture

p̂t
� = e�i�ctp̂�. �3.16�

We also introduce the notations for vectors q�

= �qx� iqy� /�2 and write q�p̂=q−p̂+−q+p̂−. Using Eq. �3.16�
and the operator relation eÂeB̂=eÂ+B̂e�1/2��Â,B̂	, we further
transform Eq. �3.15� to

eiq�p̂t�H
2
e−iq�p̂�H

2
= exp�2i�H

2 �q̃t
−p̂+ + q̃t

+p̂−�sin
�ct

2
��

�exp�− i�H
2 q2

2
sin��ct	� . �3.17�

In Eq. �3.17�, we denoted q̃t
�=q�e�i�ct/2, or in other words,

the vector q̃t is obtained from the vector q by a rotation on
angle �ct /2. Using Eqs. �3.15� and �3.17� we can write Eq.
�3.14� in the following form:

�̂tt�
�R�p� = − i��t − t��e−�iĤ+1/2�q��t−t��� d2q

�2��2Wtt���q��

�exp�2i�H
2 q̃t−t�p̂ sin
�c

2
�t − t����

�exp�− i�H
2 q2

2
sin��c�t − t��	� . �3.18�

It is illustrative to consider the zero-field limit. In this
case the momentum operator becomes a c number and Eq.
�3.18� yields

�̂tt�
�R�p� = − i��t − t��e−�t−t��/2�q� d2q

�2��2W�q�e−i�p−q�t−t��.

�3.19�

Changing integration variables in Eq. �3.19� to �p−q and the
angle formed by the vector p−q with some fixed direction,
we show the consistency of the employed approximation,
namely,

�̂�R�p� = �̂0
R �3.20�

with �̂0
R defined by Eq. �3.12� and

1

�q
=� d�

2�

1

��

. �3.21�

The scattering rate

1

��

= 2�0�W
2pF sin
�

2
� �3.22�

off disorder on angle � can be written in terms of its angular
harmonics

1

��

= �
n=−!

+!
ein�

�n
, �−n = �n. �3.23�

Then, �q=�0.
In finite magnetic fields, we notice that the exponential

factors in Eq. �3.18� are 2� /�c periodic. The argument of
these exponents vanishes at t− t�= lTc with integer l and the
integral in Eq. �3.18� diverges; Tc=2� /�c is the cyclotron
period. We argue that this integral gives, in fact, a � peak of
the width �t�1 /EF for time difference t− t�= lTc. Indeed,
this statement is obvious if the operators in the exponent of
Eq. �3.18� can be treated as commuting. For time intervals
�t− t�− lTc�
1 /�EF�c the commutator of the two operators
in the exponent of Eq. �3.18� is small since, in this case, each
operator is multiplied by sin��c�t− t�� /2	
��c /EF, and we
can apply the same argument as the one used in zero mag-
netic field. On the other hand, for 1 /�EF�c
 �t− t�− lTc�
"Tc /2 the result of the integration in Eq. �3.18� vanishes
because of the rapid oscillations of the exponent. This can be
checked explicitly by calculation of the matrix elements of
the self-energy Eq. �3.18�. We conclude that the noncommu-
tativity of the operators can be ignored in Eq. �3.18�, and we
can apply our zero-field considerations whenever t− t� is a
multiple of the cyclotron period Tc.

The contributions to self-energy �3.14� with l�1 are pro-
portional to �l and, therefore, can be neglected in moderately
weak magnetic fields, when �	1. We stress that the terms
with l�1 are beyond the accuracy of the first iteration of the
self-consistent scheme. The corrections of the higher orders
in � can be taken into account in the spirit of Ref. 17, where
the small scattering angle was only considered. In this paper,
we restrict our analysis to terms l=0,1, sufficient in not too
strong magnetic fields.

Introducing a new variable p�=p−q in Eq. �3.18� and
neglecting the variation of the function Wt,t��p�−p� given by
Eq. �3.7� �see below�, we can easily perform the integration
over the absolute value �p��. This integration results in

�̂t,t�;�
�R =

1

i

1

2
��t − t�� − ���t − t� − Tc��K̂t,t�;��1� ,

�3.24�

where we have defined the integral kernel

K̂t,t�;��F���� =� d��

2�

eipF�n�−n����t,t�

��−��
F���� �3.25�

with an arbitrary function F���; n�= �cos � ; sin � ;0�. The
negative sign of the second term in Eq. �3.24� corresponds to
the chemical potential �=s�c, with integer s, such that the
density of states ���� is at minimum. We note that the exact
position of the chemical potential is of no importance for our
final results.

Equation �3.24� is valid if the variation in the matrix ele-
ment for the transitions in the moving reference frame,
Wt,t��p�−p�, can be neglected in the course of integration
over the absolute value �p��. This requirement leads to the
limitation on the strength of electric fields. Since the relevant
time scale is �t− t�− lTc�
�q	Tc, which insures that the pa-
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rameter � can be defined in Eq. �3.24� unambiguously, the
important range of the integration is �p���1 /vF�q. The re-
quirement of smoothness of Wt,t��p�−p� in the momentum
variable means that the distance electron drifts over one cy-
clotron period must be smaller than the quantum length vF�q.
In the case of a constant electric field, this condition amounts
to vD /�c	vF�q, or equivalently, �dc	EF�q. If this condition
is not met, the amplitude of oscillations as a function of �dc is
reduced because of the finite broadening in time of the self-
energy. In experiments,21,27 EF�q�102, �dc
5, and the
above condition is satisfied. However, the amplitude of os-
cillations in Ref. 21 shows tendency to decrease when �dc
increases. In our model, this tendency can be accounted for
by taking into consideration the dependence of the function
Wt,t��p�−p� on the absolute value of momenta, which be-
comes stronger as �dc increases.

B. Electron distribution function

In Sec. III A, we analyzed the effect of disorder on the
spectral characteristics of the electron Green’s function, de-
termined by the retarded and advanced components of the
Green’s function. Now we reduce the equation for the
Keldysh component of the Green’s function to the kinetic

equation for the electron distribution function f̂ , related to

the Keldysh component ĜK through the standard expression

ĜK = ĜR − ĜA − 2�ĜRf̂ − f̂ ĜA	 . �3.26�

In the present analysis, the Wigner transformation

f�t , t� ;R ,p� of the distribution function f̂ in time and coordi-
nate variables is independent of the “center-of-mass” coordi-
nate R= �r+r�� /2 due to the translational symmetry. The
peaked structure of the retarded and advanced Green’s func-
tions in Eq. �3.26� makes f�t ,� ;R ,p� to be independent of
the absolute value of the momentum, p. The dependence on
the direction of the momentum is still to be retained. Notice
that although the two components of the momentum operator
are not commuting, the momentum direction is well defined
in the quasiclassical regime EF��c. Therefore, we can write
f�t , t� ;R ,p�= f�t , t� ;n��= f t,t�;�. The solution of the resulting
quantum kinetic equation presented in Sec. IV is consistent
with the assumptions made above.

The distribution function f�t , t� ;n�� obeys the following
kinetic equation:

���t + iĤ�; f̂	 = Stdis� f̂� + Stee� f̂� , �3.27�

where the notation �· ; ·	 stands for the commutator in one-
particle Hilbert space and the time variable. In Eq. �3.27� the
collision integral Stee�f� describes the electron-electron inter-
action and is discussed in the end of this section. The colli-

sion integral Stˆ dis� f̂� represents scattering off disorder and
can be written as the sum of scattering “out” and “in” terms

Stdis = Stout + Stin, �3.28�

where

iStout� f̂� = ��̂Rf̂ − f̂�̂A	 , �3.29a�

iStin� f̂� =
1

2
��̂K − �̂R + �̂A	 . �3.29b�

Next, we analyze the collision integral in Eq. �3.27�. We start
our analysis with the scattering-out term, Eq. �3.29a�, written
as

iStout� f̂�t,t�;� =� dt���̂t,t�;�
�R ft�,t�;� − f t,t�;��̂t�,t�;�

�A 	 .

�3.30�

Using Eq. �3.24� we can perform integration over intermedi-
ate time t� in Eq. �3.30� and obtain

Stout� f̂�t,t�;� = − K̂t,t;��1�f t,t�;� + �K̂t,t−Tc;��1�f t−Tc,t�;�

+ �f t,t�−Tc;�K̂t�−Tc,t�;��1� , �3.31�

where the operator K̂t,t�;��1� acts on a unity as defined by Eq.
�3.25� and Tc=2� /�c.

We now turn to the consideration of the scattering-in
term, Eq. �3.29b�. We express the self-energies through the
Green’s functions using the self-consistency condition, Eq.
�3.6�, and the parametrization in Eq. �3.10�,

Stin� f̂�t,t� = i� d2q

�2��2Wt,t��q�eiq�p̂�H
2
�ĜRf̂ − f̂ ĜA	e−iq�p̂�H

2
,

�3.32�

where the Green’s functions are given by Eq. �3.13�. Com-
muting the retarded �advanced� Green’s function with the left
�right� exponent, we rewrite Eq. �3.32� as

Stin� f̂�t,t� = i� d2q

�2��2� dt�Wt,t��q�

��Ĝt,t�
R eiq�p̂t−t��H

2
f t�,t��p̂�e−iq�p̂�H

2

− eiq�p̂�H
2

f t,t��p̂�e−iq�p̂t�−t��H
2
Ĝt�,t�

A 	 . �3.33�

Using eiq�p̂�H
2

f t,t��p̂�e−iq�p̂�H
2

= f t,t��p̂−q�, we commute the ex-
ponents with the distribution function,

Stin� f̂�t,t� = i� d2q

�2��2� dt�Wt,t��q�

��Ĝt,t�
R eiq�p̂t−t��H

2
e−iq�p̂�H

2
f t�,t��p̂ − q�

− f t,t��p̂ − q�eiq�p̂�H
2
e−iq�p̂t�−t��H

2
Ĝt�,t�

A 	 .

�3.34�

Following the same line of arguments as in the derivation of
Eq. �3.24�, we put Eq. �3.34� into the form

Stin�f�t,t�;� =� dt��
1

2
��t − t�� − ���t − t� − Tc��

�K̂t,t�;��f t�,t�;�� + 
1

2
��t� − t��

− ���t� − t� − Tc��K̂t,t�;��f t,t�;��� , �3.35�
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where K̂t,t�;��f t1,t2;�� is defined by Eq. �3.25�. Performing the
time integration in Eq. �3.35� we find

Stin� f̂�t,t�;� = K̂t,t�;��f t,t�;�� − �K̂t,t�;��f t−Tc,t�;��

− �K̂t,t�;��f t,t�−Tc;�� . �3.36�

Collecting Eqs. �3.31� and �3.36� and using i�Ĥ ; f t,t�;�	
=�c��f t,t�;� we can finally write down the kinetic equation


 �

�t
+

�

�t�
+ �c

�

��
� f t,t�;� = Stdis�f�t,t�;� + Stee�f�t,t�;�

�3.37�

with the collision integral

Stdis�f�t,t�;� = K̂t,t�;��f t,t�;�� − K̂t,t;��1�f t,t�;� − �K̂t,t�;��f t−Tc,t�;��

+ �K̂t,t−Tc;��1�f t−Tc,t�;� − �K̂t,t�;��f t,t�−Tc;��

+ �f t,t�−Tc;�K̂t�−Tc,t�;��1� . �3.38�

The integral kernel K̂t,t�;��F���� defined by Eq. �3.25� is the
generalization of the corresponding differential operator de-
rived in Ref. 17 for small-angle scattering.

We briefly discuss the term in the kinetic equation, Eq.
�3.37�, representing the electron-electron interaction, Stee�f�.
As it was shown in Ref. 18, electric fields produce an isotro-
pic nonequilibrium contribution to the distribution function,
which can only be stabilized by the inelastic relaxation
mechanisms. In weak electric fields, the important inelastic
relaxation is due to the electron-electron scattering. To take it
into account, we keep the corresponding collision integral
Eq. �3.42�, which can be written in the energy representation
for a steady in time distribution function f���,

Stee�f���� =� d��� d#M�#,�,���

�� f̃���f��+� f̃����f��−�� − f��� f̃��+�f���� f̃��−��	 ,

�3.39�

where f̃����1− f���, �+=�+#, �−�=��−#, and M�# ,� ,���
describes the dependence of the matrix element of the
screened Coulomb interaction on the transferred energy #
and the electron energies � and ��. The kernel M�# ,� ,���
has been discussed in details in Ref. 18. Below we use the
linearized version of Eq. �3.39�,

Stee�f���� = −
f��� − fT���

�ee
. �3.40�

Here, �ee is the inelastic relaxation time due to the electron-
electron interaction,

1

�ee
�

T2

4��F
ln

$vF

max�T,��c
3�tr�

, �3.41�

which can be obtained as a projection of the linearized
electron-electron collision integral on the oscillating har-
monic of the distribution function �see Eq. �4.4a� below	.

C. Bilinear response in microwave field

In this subsection we simplify the integral kernel K̂t,t� in
the limit of weak microwave power, keeping only terms
which are bilinear in the microwave electric field, i.e., linear
in power P�, introduced in Eq. �2.6�. In the presence of

microwave radiation K̂t,t� has the oscillatory dependence on
the time variable �t+ t�� /2. The distribution function in turn
acquires nonstationary corrections oscillating with the micro-
wave frequency �. It follows from the form of the kinetic
equation, Eq. �3.37�, that those corrections are small in the
parameter on the order of 1 /��tr in systems with considered
here mixed disorder.34 We, therefore, neglect their contribu-
tion to the distribution function and consider only the station-
ary component of the distribution function. The latter can be
found from the following equation:

�c��f t−t���� = Stdis�f�t−t� + Stee�f� , �3.42�

where the symbol �¯� stands for time averaging over one
period of the microwave oscillations and we included the
collision term due to the electron-electron interaction. Due to
the 2� /� periodicity of the collision integral, Eq. �3.38�, the

time average of the kernel K̂, Eq. �3.25�, is given by the
integral over one period of the microwave field.

We consider the response of a two-dimensional electron
gas to the in-plane electric field

Etot = E + Emw, �3.43�

represented as a superposition of a constant electric field E
and a microwave field

Emw = E� Re�e�e−i�t	 . �3.44�

Here we consider the case of the circular polarized micro-
wave radiation. The case of arbitrary polarization of micro-
wave radiation is relegated to a separate investigation.34 In
Eq. �3.44� we introduced the complex polarization vector
e�= �ex� iey� /�2 with the property �̂e�= � ie�. In the above
equations, the upper �lower� sign corresponds to the right
�left� polarization of the microwave field propagating in the
magnetic field direction �see Fig. 1�.

The displacement �t1,t2
, Eq. �3.7b�, is found by solving Eq.

�3.5� with the electric field specified by Eqs. �3.43� and
�3.44�. The linearity of Eq. �3.5� allows us to represent its
solution as the sum of the displacements in constant and
microwave fields,

�t1,t2
= �t1−t2

dc + �t1,t2
ac,�, �3.45�

where

�t1−t2
dc =

e�t2 − t1��̂E

m�c
, �3.46�

and

�t1,t2
ac,� =

2�2P�

pF
sin

��t2 − t1�
2

Im�e�e−i��t1+t2�/2	 . �3.47�

The dimensionless parameter P� has been introduced in Eq.

�2.6�. We make an expansion of the integral kernel K̂t,t� in
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Eq. �3.25� to the first order in P� using the relation

eipF�n�−n����t1,t2 � eipF�n�−n����t1−t2
dc �1 −

pF
2

2
��n� − n����t1,t2

ac 	2� .

�3.48�

Averaging Eq. �3.48� with respect to time results in

��n� − n����t1,t2
ac 	2 =

2P�

pF
2 �n� − n���

2sin2��t1 − t2�
2

.

�3.49�

Finally the collision kernel to the second order in the micro-
wave field takes the form

K̂t,t�;��F���� =� d��

2�
eiW����t−t��F����

�
 1

���−�

− P�

1 − cos ��t − t��
�̄��−�

� ,

�3.50�

where the rate 1 / �̄ has been introduced in Eq. �2.5� and the
quantity

W��� = eERc�sin � − sin ��� �3.51�

is the work done by the dc electric field as the result of
scattering off an impurity,26 W���=eE
R�→�� with the shift
of the cyclotron orbit 
R�→�� given by Eq. �2.1�.

The collision integral due to scattering off disorder is ob-
tained from Eq. �3.50� by performing the Fourier transforma-
tion in time variable t− t�. We represent it as the sum of two
terms describing two separate scattering mechanisms

Stdis = Stdc + Stmw. �3.52�

In Eq. �3.52� the first term corresponds to the scattering off
the impurities in the absence of the microwave radiation26

Stdcf =� d��

2�

��� + W����

�0

f�� + W���,��� − f��,��

���−�

.

�3.53�

The second term in Eq. �3.52�,

Stmwf = −
P�

2�0
�
�
� d��

2�

1

�̄��−�

���� + W����

��f�� + W���,��� − f��,��	 − ��� + W��� � ��

��f�� + W��� � �,��� − f��,��	� , �3.54�

describes the scattering processes of electrons off impurities
with participation of a microwave radiation quantum. For the
analysis limited to the first order in the microwave power, all
multiphoton processes are neglected. More specifically, the
first term in Eq. �3.54� represents the impurity scattering with
one photon emitted �absorbed� virtually and can be thought
of as the renormalization of the impurity potential by micro-
wave radiation. This term is taken into account in Sec. II A
as a linear in P� contribution to jel in Eq. �2.2�. The second
term in Eq. �3.54� describes the real processes of emission

�absorption� of one microwave quantum accompanying the
impurity scattering. It is this term which produces the oscil-
latory � /�c dependence of the magnetoresistance and corre-
sponds to jin in Eq. �2.2�.

We notice that the obtained collision integral vanishes in
the clean system for any frequency � away from the cyclo-
tron resonance. In the clean limit, the conductivity tensor can
be found by applying the Kohn’s theorem38 argumentation.
The conductivity tensor of an interacting system, which is
galilean invariant, is identical to that of the noninteracting
system.37 It follows then that away from the cyclotron reso-
nance, ���c, the electric field appears in the collision inte-
gral only in a combination with the disorder scattering rate
1 /��.

IV. MAGNETO-OSCILLATIONS IN THE PRESENCE OF ac
AND dc EXCITATIONS

In this section we calculate and analyze the dissipative
current

j = 2evF� d�

2�
cos �� ����f��,��d� , �4.1�

where the distribution function is determined as a solution of
kinetic equation �3.42� with the collision integral given by
Eqs. �3.52�–�3.54�.

A. Solution of the kinetic equation

We look for the solution of the kinetic equation, Eq.
�3.42�, in the form

f��,�� = fT��� + �fcl��,�� + �f0��� + �f1��,�� , �4.2�

where the first term is the equilibrium Fermi-Dirac distribu-
tion function, Eq. �2.10�. The second term is the classical
solution corresponding to the constant density of states

�fcl��,�� = − ��fT
eERc

�c�tr
cos � , �4.3�

leading to the Drude result for the longitudinal conductivity
at large Hall angle �Eq. �2.13�	.

The third and fourth terms in Eq. �4.2� are the zeroth and
first angular harmonics of the correction to the distribution
function resulting from the quantum oscillatory component
of the density of states in collision integral �3.52�. For
�c�tr�1, we keep only the isotropic component and the first
angular harmonic of the distribution function,

�f0��� = ���fTI sin
2��

�c
�4.4a�

�f1��,�� = ���fT
A1 cos
2��

�c
+ �A2�cos � . �4.4b�

The coefficients I, A1, and A2 are fixed by kinetic equation
�3.42�. The calculation of these coefficients is outlined in the
Appendix.
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The amplitude I of the isotropic part of the distribution
function is

I = −
�c

�

1

�ee
−1 + �0

−1 − %��dc� + 2P�%̄��dc�sin2 ��ac

��dc%���dc�

− 2��ac sin 2��acP�%̄��dc� − 2�dc sin2 ��acP�%̄���dc�	 .

�4.5�

Here, functions %��dc� and %̄��dc� are defined as

%��dc� = �
n

Jn
2���dc�

�n
�4.6a�

and

%̄��dc� = �
n

Jn
2���dc�
 1

�n
−

1

2�n+1
−

1

2�n−1
� �4.6b�

in terms of the Bessel functions Jn���dc� of the order n and
angular harmonics 1 /�n of scattering rate off disorder �Eq.
�3.23�	. Term �0

−1 in the denominator of Eq. �4.5� is the n
=0 harmonic of scattering rate off disorder and coincides
with the quantum-scattering rate off disorder. Coefficient I
contains the inelastic relaxation time �ee �Eq. �3.41�	. Equa-
tion �4.5� was obtained in Ref. 26 for arbitrary value of �dc
and P�=0 and in Ref. 18 for �dc	1 and P�	1, and has
been shown to be important for the description of MIRO and
HIRO at small voltages. Equation �4.5� determines the be-
havior of the isotropic nonequilibrium component of the dis-
tribution function in constant electric field of an arbitrary
strength.

The amplitude A1 is given by

A1 = −
I

��c
�%���dc� − 2P�%̄���dc�sin2 ��ac	 +

1

�2 ��dc%���dc�

− 2��ac sin 2��acP�%̄���dc� − 2�dc sin2 ��acP�%̄���dc�	 .

�4.7�

Finally we obtain the amplitude A2 in the following form:

A2 =
I

��c
�%���dc� − 2P�%̄���dc�sin2��ac	 . �4.8�

Equations �4.5�, �4.7�, and �4.8� determine the first two an-
gular harmonics of the distribution function through Eq.
�4.4�. This allows us to compute the current density as dis-
cussed in Sec. IV B.

B. Nonlinear current

In this section we calculate the dependence of the current
to the first order in power P� on parameters �dc and �ac,
characterizing the strength of the dc and ac excitations, re-
spectively. We substitute the distribution function Eq. �4.2�
with factors I and A1,2 given by Eqs. �4.5�, �4.7�, and �4.8� to
the expression for the dissipative current, Eq. �4.1�,

j��dc,�ac� = �DE + �j , �4.9�

where the Drude conductivity �D is given by Eq. �2.13� and
the leading correction in �2 to the current has the form

�j = �2�A1 − A2�evF�0. �4.10�

Substituting A1,2 from Eqs. �4.7� and �4.8� to Eq. �4.10�,
we represent the correction to the current in terms of the
dimensionless function F��dc ,�ac�,

�j = 2�DE�2F��dc,�ac� . �4.11�

The function F��dc ,�ac� in Eq. �4.11� describes the leading
correction to the classical value of the current due to oscil-
lations of the electron density of states. This function can be
represented as a combination of the displacement term
Fd��dc ,�ac� and the inelastic term Fi��dc ,�ac�, arising due to
the nonequilibrium isotropic component of the distribution
function,

F��dc,�ac� = Fd��dc,�ac� + Fi��dc,�ac� . �4.12�

The displacement contribution Fd originates from the modi-
fication of the scattering rates in crossed electric and mag-
netic fields, while neglecting the effect of electric fields on
the isotropic component of the electron distribution function.
We have

Fd

�tr
= −

%���dc�
�2 +

2P�

�2 
��ac%̄� sin 2��ac

�dc
+ %̄� sin2 ��ac�

�4.13�

with %=%��dc� and %̄= %̄��dc� defined by Eqs. �4.6�.
The remaining inelastic contribution is proportional to the

amplitude I of the isotropic and energy-dependent nonequi-
librium component of the distribution function �f0���. This
contribution is sensitive to the energy relaxation rate 1 /�ee at
sufficiently small values of �dc,

Fi

�tr
= −

2

�2�dc

%� − 2%̄�P� sin2 ��ac

�ee
−1 + �0

−1 − % + 2%̄P� sin2 ��ac

���dc%� − 2��ac%̄P� sin 2��ac − 2�dc%̄�P� sin2 ��ac� .

�4.14�

Equations �4.11�–�4.14� give the explicit expression for the
current in response to the applied dc electric field with
strength E=�dc�c / �2�e�Rc� in weak microwave fields P�	1.

First, we analyze the properties of functions Fd��dc ,�ac�
and Fi��dc ,�ac� in a weak dc electric field, �dc	1. In this case

%��dc� =
1

�0
−

�2�dc
2

2�tr
+

�4�dc
4

32

1

��

, �4.15a�

%̄��dc� =
1

�tr
−

1

4
�2�dc

2 1

��

, �4.15b�

where 1 /�0�1 /�n=0 is the quantum-scattering rate off disor-
der,

1

�tr
=

1

�0
−

1

�1
�4.16�

is the transport scattering rate written in terms of harmonics
of scattering rate �see Eqs. �2.13� and �3.23�	, and
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1

��

=
3

�0
−

4

�1
+

1

�2
. �4.17�

Substituting Eqs. �4.15� to Eqs. �4.13� and �4.14�, we obtain

Fd = 1 −
�tr

��


3

8
�2�dc

2 + P����ac sin 2��ac + sin2 ��ac��
�4.18�

and

Fi = − 2
1 − ��tr/���P� sin2 ��ac

�tr/�ee + �2�dc
2 /2 + 2P� sin2 ��ac

���2�dc
2 �1 − ��tr/���P� sin2 ��ac	 + 2�P��ac sin 2��ac� .

�4.19�

In smooth disorder, �tr	��. In this case, Eq. �4.19� coincides
with the contribution to the electric current, considered in
Ref. 18, which we already presented in Eq. �2.20�. The non-
linear dependence on the applied electric fields occur at �dc

��tr /�ee.

In strong dc electric-fields functions %��dc� and %̄��dc� can
be evaluated for �dc�1 using the asymptotes of the Bessel
functions. As a result, we find the displacement contribution
Fd��dc ,�ac� in the form

Fd

�tr
=

4

�2

1

�dc��

sin 2��dc�1 − 2P��

+
4

�2

P�

�dc��
�
�

�dc � �ac

�dc
sin 2���dc � �ac� �4.20�

with 1 /��=�ncos �n /�n being the backscattering rate off
disorder. The function Fd��dc ,�ac� has an oscillatory depen-
dence on the parameter �dc. We presented the corresponding
expression for the nonlinear contribution to the current in
Sec. II, Eqs. �2.15� and �2.16�, where the same result was
obtained from semiqualitative arguments and the stationary
phase approximation.

For the inelastic contribution Fi in the limit �dc�1 we
obtain the following estimate:

Fi

�tr
= −

8

�4

1

�dc��

�0

���dc
cos2 2��dc
1 − 2P�
4 sin2 ��ac

+
�ac

�dc
tan 2��dc sin 2��ac�� . �4.21�

We notice that this contribution Fi��dc ,�ac� is smaller than
Fd��dc ,�ac� by factor �1 /�dc� in strong electric fields �dc�1.
For a system with smooth disorder Fi��dc ,�ac� contains also
an additional small factor �0 /��	1. This smallness allows
one to neglect the inelastic contribution to the current in
strong electric fields. The first line of Eq. �4.21� coincides39

with the asymptote found in Ref. 26. The second line of Eq.
�4.21� describes the effect of microwave field in the bilinear
response.

C. Model of disorder

The purpose of this section is to analyze our results for a
particular model of disorder. The disorder in GaAs/AlGaAs

heterostructures is mainly due to remote charged donors. The
potential created by these donors is smooth on the electron
wavelength scale. Therefore, such potential is characterized
by an exponentially suppressed backscattering amplitude. As
we saw in Sec. II A the latter is crucial for the onset of
nonlinear magneto-oscillations at higher current densities.
On the other hand the relatively weak in-plane disorder cre-
ates the scattering potential of the short range, giving rise to
a finite backscattering amplitude.

An adequate model should describe a mixed disorder that
includes impurities with narrow and wide angle scattering.40

Specifically, we use the expression for the angular harmonics
of the scattering rate employed in Ref. 26,

1

�n
=

�n,0

�sh
+

1

�sm

1

1 + &n2 . �4.22�

For this model we have the following expressions for the
quantum and transport scattering rates:

1

�q
=

1

�0
=

1

�sh
+

1

�sm
,

1

�tr
=

1

�sh
+

1

�sm

&

1 + &
. �4.23�

We perform calculations under the assumptions �c�q
1 and
�c�tr�1, which can be met for disorder described by Eq.
�4.22�, provided that &	1 and �sh��sm. The last inequality
means that the long-range disorder is stronger than the short-
range disorder. The scattering time �� is given by

1

��

=
3

�sh
+

12&2

�sm
. �4.24�

Equations �4.23� and �4.24� determine the ratio �tr /��, which
appears in Eqs. �4.18� and �4.19� for the nonlinear contribu-
tions to the current at weak electric fields.

For very small values of �dc and P�, we have the follow-
ing estimate:

Fi = −
2�ee

�tr
��2�dc

2 + 2�P��ac sin 2��ac� . �4.25�

Comparison of this expression with Eq. �4.18� shows that the
linear in P� and �dc

2 contributions to the nonlinear current are
dominated by the inelastic mechanism if �ee /�tr��tr /��. If
only long-range disorder is present in the system, we obtain
for the ratio �tr /��=12&	1 and the inelastic mechanism is
indeed dominant for sufficiently low temperatures, while
�ee��tr&��0. At higher temperatures the interaction effects
suppress the oscillations of the density of states and decrease
the overall amplitude of nonlinear current. In the case of
mixed disorder, parameter �tr /�� could be on the order of
unity and the inelastic and displacement mechanisms become
comparable at lower temperatures when �ee��tr, but still
�ee��0, and the oscillations of the density of states are not
smeared by the interaction effects. As a consequence, there
exists a regime where the linear photoresistivity may have
significantly weak dependence on electron temperature.41

We use the model for disorder described by Eq. �4.22� to
evaluate the backscattering rate, which characterizes nonlin-
ear contributions to the current in strong electric fields �dc
�1. Performing summation over index n for �=� in Eq.
�3.23�, we find
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1

��

=
1

�sh
+

1

�sm

2�

�&
exp
−

�

�&
� . �4.26�

This rate controls the magneto-oscillations for �dc�1 �Eqs.
�4.20� and �4.21�	. For small values of &, the second term can
be disregarded.

To analyze the case of arbitrary �dc, we evaluate functions
%��dc� and %̄��dc�, Eqs. �4.6�, in the limit &	1. We perform
summation over index n in Eq. �4.6� using the Poisson for-
mula and neglect exponentially small corrections, similar to
the second term in Eq. �4.26�. The result reads26

%��dc� =
J0

2����
�sh

+
1

�sm

1

�1 + &�2�dc
2

, �4.27a�

%̄��dc� =
1

�sh
�J0

2���dc� − J1
2���dc�	 +

&

�sm

1 − &�2�dc
2 /2

�1 + &�2�dc
2 �5/2 .

�4.27b�

Equation �4.27� is convenient for calculating the nonlinear
contribution to the current at arbitrary value of �dc. The re-
sulting function F��dc ,�ac�, Eq. �4.12�, is plotted in Figs. 2�a�
and 2�b�. We also compare contributions Fd��dc ,�ac� and
Fi��dc ,�ac� to the net nonlinear current. Both functions are
shown for the same set of parameters in Fig. 2�c�. The in-
elastic contribution Fi��dc ,�ac� has a large variation at small
�dc, and vanishes at larger values of �dc. On the other hand,
the displacement component Fd��dc ,�ac� is an oscillatory
function of the parameter �dc with only weakly decaying am-
plitude.

For �dc�1, when the inelastic contribution becomes small
and the function F��dc ,�ac� coincides with the displacement
contribution Fd��dc ,�ac�. The latter is a sum of two terms.
One term contains 1 /�sm, this term varies smoothly as a
function of �dc on the scale �dc�1 /�&. Another term con-
tains 1 /�sh and oscillates as a function of �dc with period
equal to unity. The corresponding oscillating term can be
written as

Fd,osc

�tr
= −

�J0
2���dc�	�
�2�sh

+
2P�

�2�sh
��J0

2���dc� − J1
2���dc�	�

�sin2 ��ac +
��ac

�dc
�J0

2���dc� − J1
2���dc�	�sin 2��ac� .

�4.28�

This equation indicates clearly the vital importance of the
short-range disorder, characterized by the finite backscatter-
ing rate 1 /�sh for the onset of the magneto-oscillations in the
nonlinear transport regime.

D. Differential magnetoresistance

Now we apply Eqs. �4.9� and �4.11� for the electric cur-
rent response to the applied dc electric field to describe the
longitudinal differential magnetoresistance

'�j� = �E�/� j . �4.29�

In Eq. �4.29� we have chosen ex to be the current direction,
so that E� is the electric-field component parallel to the cur-
rent. In the limit �c�1 /�tr we write

E� = 'Dj, 'D =
1

e2�0vF
2�tr

, �4.30�

where the electric current density j is given by Eq. �4.9�
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FIG. 2. �Color online� The function F��dc ,�ac� as defined by
Eqs. �4.12�–�4.14� with %��dc� and %̄��dc� given by Eq. �4.26� for the
model of disorder introduced in Sec. IV C. �a� �sm=1, �sh=1, �ee

=0.5, &=0.0001, and P�=0.25; �b� �sm=0.1, �sh=1, �ee=10, &
=0.001, and P�=0.01. In both cases the thick solid �red� line, the
dashed �blue� line, the dashed-dotted �black� line, and the thin solid
�black� line are used for �ac=2.75, �ac=3, �ac=3.25, and �ac=3.5,
respectively. Panel �c� shows the inelastic contribution Fi, solid
�red� line, and displacement contribution Fd, dashed �blue� line for
the set of parameters of panel �b� at �ac=2.75.

MAXIM KHODAS AND MAXIM G. VAVILOV PHYSICAL REVIEW B 78, 245319 �2008�

245319-12



E� = 'Dj�1 + 2�2F��dc
j ,�ac�	 , �4.31�

calculated with a total electric field E�'Hj, where 'H
=�c / �e2vF

2�0� is the Hall resistance and

�dc
j =

2�e��'Hj�Rc

�c
=

4�j

epF�c
. �4.32�

We finally obtain for the oscillatory part of the differential
resistance, �'='−'D the following expression:

�'�j�
'D

= 2�2 d

d�dc
j ��dc

j F��dc
j ,�ac�	 �4.33�

with function F��dc
j ,�ac� given by Eqs. �4.12�–�4.14�. Figure

3 shows the differential resistance found for the specific dis-
order model considered in Sec. IV C.

We analyze our results in the limiting cases of small and
large dc currents. We start with the discussion of the differ-
ential resistance �' at small direct current, �dc

j 
1, when in
samples with smooth disorder the nonlinear behavior origi-
nates from Fi��dc

j ,�ac� contribution. Keeping only this contri-
bution in Eq. �4.33�, at �dc

j =0 we have

�'

'D
= − �2��2

2��acP� sin 2��ac

�tr/�ee + 2P� sin2 ��ac
. �4.34�

As �dc
j increases, the differential resistance decreases from

the above value on the scale �dc
j ���tr /�ee and exhibits a

nonmonotonic behavior at �dc
j �1. However for large values

of �dc
j , the inelastic contribution to the differential resistance

vanishes fast, as discussed in Sec. IV B.
We now analyze the differential resistance at large values

of direct current, �dc
j �1. In this limit the displacement con-

tribution dominates over the inelastic contribution. There-
fore, we keep only Fd��dc

j ,�ac� and find

�'

'D
=

�4��2�tr

���

�1 − 2P��cos 2��dc

+ 2P�
cos 2��dc cos 2��ac

−
�ac

�dc
sin 2��dc sin 2��ac�� . �4.35�

The first term in square brackets coincides with the result of
Ref. 26 at P�=0. At finite P� the factor �1−2P�� represents
the impurity potential renormalization due to the virtual ab-
sorption and emission of photons. These radiative corrections
tend to suppress the dark resistivity and can be interpreted as
motional narrowing or averaging out the electrostatic poten-
tial of impurities in the presence of an oscillating electric
field. The other two terms in Eq. �4.35� describe the effect of
the combined scattering off disorder in mixed constant and
oscillating electric fields when the real microwave photons
are absorbed or emitted.

We briefly discuss the properties of Eq. �4.35� as a func-
tion of two parameters �dc

j and �ac. It is plotted in Fig. 4 as a
grayscale contour plot. This function exhibits a series of
maxima and minima in ��ac ,�dc

j � plane. In general, for �ac
��dc

j the local maxima and minima of the function defined
by Eq. �4.35� are located at

��ac,�dc
j �max = �m � 1/4,n � 1/4� ,

��ac,�dc
j �min = �m � 1/4,n � 1/4� . �4.36�

We further notice that in the region of parameters ��ac−�dc
j �


 ��ac+�dc
j �, namely, not too far from the main diagonal in the

two-dimensional plain ��ac ,�dc�, result �4.35� reduces to
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FIG. 3. �Color online� The upper and lower panels show the
differential resistivity as a function of �dc for values of parameters
used in Figs. 2�a� and 2�b�, respectively. The differential resistance
is obtained by substitution of F��dc ,�ac�, shown in Figs. 2�a� and
2�b�, to Eq. �4.33�.
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FIG. 4. The differential resistance obtained from Eq. �4.35� for
P�=0.25 presented in a grayscale plot. The bright areas correspond
to a higher value of the resistance. �Left� Away from the main
diagonal in the ��ac ,�dc

j � plane the differential resistance has minima
and maxima described by conditions �4.36�. �Right� Close to the
main diagonal �ac��dc

j , the differential resistance becomes a func-
tion of the sum �ac+�dc

j .
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�'

'D
�

�4��2�tr

���

��1 − 2P��cos 2��dc
j + 2P� cos 2���dc

j + �ac�	 .

�4.37�

Although a direct addition of two different parameters �dc
j

and �ac has no physical meaning, we believe that, in the
considered region �dc��ac, it is the second term which is
responsible for apparent structure27 of the differential resis-
tance as a function of the sum �ac+�dc

j �see Fig. 4�b�	.

V. NONLINEAR MAGNETORESISTANCE BEYOND THE
BILINEAR RESPONSE IN MICROWAVE FIELD

In this section we extend the analysis of the magne-
totransport at �dc�1 to the case of arbitrary strength of mi-
crowave radiation. We again consider the case of relatively
high microwave frequency ��1 /�tr. The last condition en-
sures that the oscillating in the variable �t+ t�� /2 part of the
distribution function is small compared to the stationary one.
We, therefore, can assume that the distribution function is
homogeneous in time, f t,t�= f t−t�. Beyond the bilinear re-
sponse, Eq. �3.50�, obtained as the expansion of Eq. �3.25� in
powers of P�, is no longer valid. We perform the time aver-
aging of the exact collision kernel �Eq. �3.25�	 over the mi-
crowave oscillation period,

K̂t,t�;��F���� =� d��

2�
F����

eipF�n�−n����t−t�
dc

��−��
eipF�n�−n����t,t�

ac
.

�5.1�

For the circular polarization the displacement due to the mi-
crowave field �t,t�

ac is given by Eq. �3.47�. The time averaging
in Eq. �5.1� results in

eipF�n�−n����t,t�
ac

= J0
Q�−��sin
��t − t��

2
� �5.2�

with J0�x� being the Bessel function and

Q�−�� = 4�P��sin
� − ��

2
� . �5.3�

The time-averaged collision kernel takes the form

K̂t,t�;��F���� =� d��

2�
F����

eiW����t−t��

��−��
J0
Q�−��sin

��t − t��
2

� .

�5.4�

The substitution of Eq. �5.4� to Eq. �3.31� leads to the fol-
lowing expressions for the out collision term:

Stout�f�t,t� = −� d��

2�

f t,t�

��−��
−� d��

2�

�

��−��
J0�Q�−�� sin ��ac�

��eiW���Tcf t−Tc,t� + e−iW���Tcf t,t�−Tc
	 . �5.5�

The scattering-in term Eq. �3.36� reads

Stin�f�t,t� =� d��

2�

eiW����t−t��

��−��
J0
Q�−�� sin

��t − t��
2

�
��f t,t� − �f t−Tc,t� − �f t,t�−Tc

� . �5.6�

We rewrite the kinetic equation Eq. �3.42� for homogeneous
in time distribution function in the energy representation

�c
�

��
f�;� = Stdis�f�;���;�. �5.7�

The full collision integral for electron scattering off disorder,
Stdis�f�;���;�, is a sum of the scattering-in and scattering-out
terms given by Eqs. �5.5� and �5.6� �see Eq. �3.28�	.

We discuss the nonlinear transport regime �dc�1. In this
case it is sufficient to consider the displacement contribution
to the nonlinear current. To calculate the displacement con-
tribution to the electric current, we substitute the equilibrium
distribution function Eq. �2.10� to the collision integral in
Eq. �5.7�. Combining Eqs. �5.5� and �5.6� and writing the
result in energy representation, we obtain

Stdis�fT�����;� =� d��

2�

K0 − 2� Re�ei��+W����TcK1�
��−��

.

�5.8�

The first kernel,

K0 = J0
Q�−�� sin
i���

2
� fT�� + W���� − fT��� , �5.9�

is the part of the collision integral to the zero order in �. In
particular, it describes the classical Drude conductivity. Al-
though the microwave radiation complicates the form of K0,
we notice that this kernel can be represented in terms of the
series expansion in powers of � /��, applied to the Fermi
distribution function. The observables, such as electric cur-
rent, are determined by energy integrals. Because the inte-
grals of all derivatives of fT��� of the second order and
higher vanish, we do not expect any effect of microwave
radiation within our model on the conductivity to the zeroth
order in �.

The second term in Eq. �5.7� is

K1 = J0
Q�−�� sin
 i���

2
− ��ac�� fT�� + W����

− J0�Q�−�� sin ��ac�fT��� . �5.10�

In the high-temperature limit, T� �e�ERc and T��, Eq.
�5.10� can be reduced to

K1 =
� fT���

��

J0�Q�−�� sin ��ac�W���

+
i�Q�−��

2
J1�Q�−�� sin ��ac�cos ��ac� . �5.11�

Similarly to the case of the small power, we look for the
correction to the distribution function in the form
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�f��,�� = �fcl��,�� + ���fTA1 cos
2��

�c
cos � . �5.12�

Substituting �f�� ,�� to Eq. �5.7�, we find that �fcl�� ,�� is
given by a sum of Eq. �4.3� and higher-order derivatives of
fT���, as discussed below Eq. �5.9�. The term of the first
order in � determines the value of coefficient A1:

A1 =
1

�c
� d�d��

�2

sin �

��−��

cos

2�W���

�c
J0�Q�−�� sin ��ac�W���

− sin
2�W���

�c

�Q�−��

2
J1�Q�−�� sin ��ac�cos ��ac� .

�5.13�

Our analysis in this section is applicable for �dc�1, when
we can utilize the saddle-point approximation, to perform
angular integrations in Eq. �5.13�. Angles � and �� which
make the phase of the integrand stationary are �= �� /2 and
��= �� /2 and correspond to 2Rc jumps along the electric-
field direction �see Sec. II�. For �P�
�dc the angular inte-
grations in Eq. �5.13� result in

A1 = −
4

�2��

sin 2��dcJ0�4�P� sin ��ac�

−
8

�2��

�ac

�dc
cos 2��dc cos ��ac�P�J1�4�P� sin ��ac� .

�5.14�

The result of numerical evaluation of the coefficient A1, Eq.
�5.13�, and its approximation, Eq. �5.14�, are shown in Fig.
5. The stationary phase approximation progressively im-
proves as the parameter �dc increases.

The nonlinear contribution to the electric current is given
by Eq. �4.10� in terms of coefficients A1, Eq. �5.13�, and
A2=0. Representing the nonlinear contribution to the current
in the form of Eq. �4.11�, we write

F��dc,�ac� = −
�tr

�dc
A1. �5.15�

The function F��dc ,�ac� found from Eqs. �5.14� and �5.15�
reads

F��dc,�ac� =
4�tr

�2���dc

sin 2��dcJ0�4�P� sin ��ac�

+
2�ac

�dc
cos 2��dc cos ��ac�P�J1�4�P� sin ��ac�� .

�5.16�

The oscillatory correction to the differential magnetoresis-
tance is obtained by substituting Eq. �5.16� to Eq. �4.33�,

�'�j�
'D

=
�4��2�tr

���

cos 2��dcJ0�4�P� sin ��ac�

−
2�ac

�dc
sin 2��dc cos ��ac�P�J1�4�P� sin ��ac�� .

�5.17�

Relation �5.17� reduces to Eq. �4.35� obtained earlier in the
weak power limit as expected.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a comprehensive theory
of an out of equilibrium two-dimensional electron system
�2DES� in a magnetic field in the case when the disordered
potential has finite scattering amplitude on an arbitrary angle.
Then, we applied this theory to analyze electron transport in
the presence of constant and oscillating in-plane electric
fields. We showed that the electric current has an oscillating
component as a function of the strength of the constant elec-
tric field and of the frequency of an oscillating electric field.
We have investigated the position of maxima and minima of
the differential resistance on the plane of parameters �dc and
�ac and found qualitative agreement with experiments of
Refs. 27 and 28.

Actual value of the differential resistance as a function of
the current through a 2DES sample depends on a number of
different scattering rates, including the full quantum-
scattering rate, the transport scattering rate, and the back-
scattering rate. Our analytical results may be applied to the
experimentally measured differential resistance to evaluate
these scattering rates and to obtain a detailed picture of the
origin and structure of the disorder in high-mobility 2DES
samples. In particular, we would like to emphasize that the
behavior of the differential resistance at large currents in
experiments of Refs. 21, 27, and 28 suggests that the disor-
dered potential has a noticeably strong short-range compo-
nent, responsible for the finite backscattering rate.

The presence of the short-range disorder also modifies the
current behavior in weak constant electric fields and at weak
power of an oscillating electric field. In particular, there are
two competing contributions to the current. One contribution
originates from the modification of the isotropic component
of the electron distribution function by electric fields,18 and

3 4 5 6
−0.2

−0.1

0

0.1

0.2

�dc

A
1

FIG. 5. �Color online� The function A1 evaluated by �a� numeri-
cal integration in Eq. �5.13�, solid line �blue�, and �b� by the sta-
tionary phase approximation applied to Eq. �5.13�, dashed line �red�
for P�=8.25 and �ac=2.25.
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we refer to this contribution as an “inelastic” contribution.
The other contribution is due to the modification of electron-
scattering rate off disorder by electric fields, known as the
displacement contribution.15–17,30 While in smooth disorder
in weak fields the inelastic contribution dominates in the
whole range of temperatures at which the nonlinear current is
expected to survive, the short-range disorder may make these
two contributions comparable. As a result, the strong tem-
perature dependence of the nonlinear current in weak fields
is expected only in samples with sufficiently weak short-
range disorder.

We also studied the dependence of nonlinear current on
the applied power of oscillating electric field. Expression
�5.17� obtained in the nonlinear transport regime �dc�1 is
not limited to the small microwave radiation power. This
expression shows that in strong microwave fields the nonlin-
ear current has a different dependence on parameters �ac and
�dc, Eq. �1.1�, which qualitatively differs from the corre-
sponding expressions in the weak-power limit. We believe
that the study of nonlinear current at strong-radiation power
may bring additional opportunities for study of microscopic
characteristics of high-mobility electron systems.
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APPENDIX: CALCULATIONS OF THE ELECTRON
DISTRIBUTION FUNCTION

In this appendix we give the details of the calculation of
the coefficients I, A1, and A2 of the distribution function in
the form of Eq. �4.4�. Substituting Eq. �4.4� to the kinetic Eq.
�3.42� with the collision terms specified by Eqs. �3.53� and
�3.54�, we obtain the following system of equations:

I
 1

�ee���
+

1

�0
�sin

2��

�c

= �K������ − 2P��sin2 ��acK̄������

+ � sin 2��acM̄������	��+ I�M������

− 2P� sin2 ��acM̄������	� , �A1�

−
�cA1

2
cos

2��

�c
= �sin ��K������ − 2P��sin2 ��acK̄������

− � sin 2��acM̄������	+ I�M������

− 2P� sin2 ��acM̄������	�� , �A2�

and

�cA2

4
= I�sin � cos

2��� + W����

�c

M������ −

sin �

��−��
�

−
P�

2 �
�

cos

2��� + W����

�c

M̄������ −

sin �

�̄�−��
�

− cos
2��� + W��� � ��

�c

M̄����� � �� −

sin �

�̄�−��
��� ,

�A3�

where �¯� stands for the averaging over angular variables �
and ��. Here we have introduced integral kernels

K������ = − 2 cos
2��� + W����

�c

W���

��−��
, �A4a�

M������ =
sin�2��� + W����/�c	

��−��
. �A4b�

The kernels K̄������ and M̄������ are obtained from Eqs.
�A4a� and �A4b�, respectively, by replacing �→ �̄ given by
Eq. �2.5�. Keeping only the energy independent part in Eq.
�A3� surviving the subsequent energy integration, we rewrite
it as

�cA2

2
= I�sin ��M����0� − 2P� sin2 ��acM̄����0�	� .

�A5�

For the angular averages appearing in Eqs. �A1�, �A2�, and
�A5�, we have the following expressions:

�K������� =
2eERc

�
%���dc�sin

2��

�c
, �A6a�

�M������� = %��dc�sin
2��

�c
, �A6b�

�sin �K������� =
eERc%���dc�

�2 cos
2��

�c
, �A6c�

�sin �M������� =
%���dc�

2�
cos

2��

�c
. �A6d�

In Eq. �A6� the function %��dc� has been introduced in Eq.

�4.6a�. The angular averages involving bared functions K̄ and

M̄ are given by Eq. �A6� with %̄��dc�, Eq. �4.6b�, replacing
%��dc�. Relation �A6� allows us to perform the angular inte-
grations in Eqs. �A1�–�A3� leading to expressions �4.5�,
�4.7�, and �4.8� of the main text.
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